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Abstract. To make the DLA model associate with more realistic processes of crystal growth, 
we construct and study a new model including the experimental variables required. 
Diffusion particles of multicomponents diffuse on the square lattice as in the DLA model; 
the aggregation perimeter contacts with a thermal bath of temperature 7 and the sticking 
probability B consists of a constant probability Bc and the thermal one 9, at a neighbouring 
site of the perimeter, as 9 = ( 1  - a)9,+ 09, (a is a parameter which includes the non- 
equilbrium-equilibrium tendency of the system).. B, is evaluated by the thermodynamic 
distribution of the king system including up to next-nearest-neighbour interactions and 
chemical potentials. Our system has the possibility of phase transitions. We show the 
phase transitions, aggregation patterns, correlation functions, fractal dimensions, and so on. 

1. Introduction 

Many substances in nature form individual, peculiar patterns. Some of the most 
beautiful and familiar examples can be found in the growth of crystals [1,2]. The 
basic interests in the pattern formation problem are, for example, (i) how the charac- 
teristic patterns appear in a structureless environment; (ii) how the original patterns 
depend on certain circumstances and change into other patterns from the static and 
dynamic points of view, including their special sensitivities; and (iii) what are the 
order parameters (OP) which distinguish these characteristic patterns. Within the past 
few years, remarkable progress has been made in understanding structure (pattern) 
formations in various random process systems. Recent developments are summarised 
in monographs by Stanley and Ostrowsky [3] and Pietronero and Tosatti [4]. Their 
works are connected with pattern formation processes over many fields, e.g. the Eden 
model, diff usion-limited aggregation ( DLA) and epidemics, including the mole’s 
labyrinth and clustering of clusters for colloids, aerosols, etc. Their model systems are 
greatly simplified and are constructed with the smallest number of parameters still 
able to distinguish their model differences. Their main interest is in studying the growth 
patterns and comparing them with certain natural forms. Furthermore, it is interesting 
to look for a complete set of order parameters to describe the pattern formation 
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processes and to determine the corresponding fractal (anomalous) dimensions. These 
works have succeeded in some sense as simplified systems and have approached their 
goals for the initial stage. However, from the microscopic point of view, the systems 
do not undergo phase transitions, and from the macroscopic point of view they are 
too simplified to be compared with natural patterns (e.g. crystal growth forms). 
Generally, crystal growth processes depend strongly on symmetries of atomic arrange- 
ments and surface anisotropies, and therefore on those near-equilibrium properties 
which are dominated by atomic and crystallographic effects. Their formation processes 
are intrinsically concerned with non-equilibrium phenomena and have no internally 
controlling mechanism. The growth at any instant must be controlled by a simple set 
of spatially uniform external conditions, e.g. the temperature, the concentrations of 
various atoms and the pressure. In the relatively well known example of the snowflake, 
the crystal growth processes are separated into several steps, i.e. (i) strong, (ii) weak 
and (iii) intermediate steps of molecular binding at the crystallographic planes, and 
show different behaviour. We propose to go beyond the initial stage and try to make 
the above-mentioned random process approaches more realistic. That is, we construct 
new more physical models which include the experimental variables required, and we 
discuss their physical properties. 

In the present paper we consider the DLA model. This was studied by, among 
others, Witten and Sander [5] and Meakin [6] and has been pointed out as a central 
problem in many fields of applied science, e.g. dielectric breakdown and viscous 
fingering (see the review articles by Nittmann et a1 [7] and Bensimon et a1 [ 2 ] ) .  Actual 
crystal growth processes are strongly associated with the concentrations, the interpar- 
ticle interactions and the chemical potentials of the composite particles, together with 
the temperature and the pressure. It is especially important to take into account the 
frustration mechanism among sticking particles, in addition to the introduction of the 
experimentally changeable variables [ 81. The diffusion particles of the system consist 
of multicomponents { i} with concentrations {c,} ( i  = 1,2, . . . , M ) .  In  this paper we 
consider a binary component system (A4 = 2) on the square (SQ) lattice for simplicity. 
After a component and some starting position of a diffusion particle are randomly 
selected, it randomly diffuses on the lattice in the same way as the usual DLA model. 
Generally, the sticking probability is supposed to correlate strongly with the tem- 
perature, the competition of the short-ranged interactions and the chemical potentials 
at the surface of the aggregation cluster (seed) (which is called the aggregation perimeter 
below), in addition to the constant probability. The irreversible (in the sense that stuck 
particles never dissociate) sticking probability P is assumed to consist of a constant 
probability Pc and a thermal probability Pt at a neighbouring site of the perimeter, 
as P = ( 1  - a )Pc+ CUP', with a parameter a. The thermal probability is assumed to be 
described with the Ising system energy including up to next-nearest-neighbour interac- 
tions and chemical potentials. If  a diffusion particle visits a site adjacent or next 
adjacent to the aggregation cluster and its sticking probability is larger than the random 
number, then the particle constructs the aggregation cluster. Otherwise it is removed 
and another introduced. Our system has the following feature. It corresponds to the 
usual DLA model (not contacted with a thermal bath) for Q =0,  and to the thermal 
DLA system (completely contacted with a thermal bath) for Q = 1. Here we conven- 
tionally call the former the non-equilibrium DLA, the latter the equilibrium DLA, and 
the remaining the non-equilibrium-equilibrium DLA. Our system suggests the possibil- 
ity of phase transitions which belong to a new type of phase transition associated with 
non-equilibrium-equilibrium states. It is also a very interesting system which we may 
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approach both from the DLA-like (non-equilibrium, finite size) point of view and from 
the statistical-mechanics-like (equilibrium, infinite size) point of view. As a first step 
we focus our attention on the phase transitions and the DLA-like properties (the 
aggregation patterns, the correlation functions and the fractal dimensions) of the system 
for a few typical physical parameters. In § 2 we define our new system and the 
computing method, in Q 3 the physical properties obtained are summarised and we 
make some concluding remarks in § 4. 

2. System and method 

Our system is a variant of the DLA model and consists of binary atoms A and B. We 
form a set of physical parameters: concentrations {cA, cB( = 1 - c A ) } ,  temperature T, 
nearest- and next-nearest-neighbour interactions (5, , J 2 }  and chemical potentials 
{ h A ,  hB} ,  together with constant sticking probability Pc and the non-equilibrium- 
equilibrium parameter a. As in the initial state an A-atom seed is put at the origin on 
the SQ lattice. At first diffusion, the particle (A or B atom), randomly chosen under 
the fixed concentrations, is added at some random site at a large distance from the 
origin. This particle walks randomly until it visits a site which is the nearest- or 
next-nearest-neighbour to the seed (aggregation cluster). There we evaluate the sticking 
probability, e.g. for the A atom 

P A  = (1 - a ) P c A +  CUP,, 

using 

PtA=exp(-PAEA)l[l +~XP(-PAEA)I (AEAGEA-EB; P - ' E k B T )  

and 

E, = -S, J,S,,,+ J 2 S , + , + h , )  ( i  =A,  B) 

where S ( p )  stands for the nearest- (next-nearest)-neighbour vector, and S takes a value 
of one (zero) for the A(B) atom. Here we assume that a same-atom pair (A-A, B-B) 
yields the same perimeter energy increment, while a different-atom pair (A-B, B-A) 
is different from it. We consider the case of J ,  < 0 and J2 > 0, i.e. a non-frustrated case 
from the interaction point of view. This case is very interesting, because of taking into 
consideration a fine interaction mechanism in the neighbourhood of the perimeter, 
and for the sake of comparison with the frustrated case of the triangular lattice in the 
near future. Notice that the following identities hold: 

( 8  " p N N N  

c P ,=l .  
i = A , B  

B c , = l  c g n = 1  
r = A , B  i = A . B  

The visiting particle sticks and forms a part of the aggregation cluster if the sticking 
probability is larger than the random number. Otherwise it is removed and another 
particle is again introduced at a random large distant point. The same procedures are 
repeated until the cluster forms an N-particle aggregation cluster ( N  sufficiently large). 
If a particle touches the boundaries of the lattice in its random walk it is removed and 
another introduced also. 

The successive computing procedure for an N-particle cluster described above 
supplies one random process datum for one set of physical parameters. We have to 
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compute NR random process data repeatedly ( N R  sufficiently large) and to take an 
average over NR data. We call this average the statistical average. This average value 
corresponds to the physical value for the fixed physical parameters. 

For our study below, such physical values must be computed for a large number 
of the required physical parameter sets. Actual computations were performed for 
finite-size( N )  systems and statistically averaged over finite ( NR) random process data. 
The method of extrapolating the properties of the infinite system will be described 
in § 3. 

3. Physical properties 

In the usual DLA model we could not think of phase transitions. We consider whether 
or not the possibility of phase transitions exists in our infinite-size system. In the limit 
of the uniform crystal we can divide the lattice into two sublattices (A and B sublattices), 
and regard the sublattice magnetisations {MA, MB} as an order parameter of the system. 
These concepts would be available for our system when the aggregation cluster size 
is large enough. We divide our lattice into the A and B sublattices (where the origin 
is the A sublattice). On our N-particle aggregation cluster we define the following 
quantities: the number of A(B) sites N A ( N B ) ;  the number of A(B) atoms occupying 
the A sites N A A ( N B A ) ;  and that of the B sites N A B ( N B B ) .  Furthermore we define the 
sublattice commensurabilities (CA, CB) and incommensurabilities ( ICA, ICB) as C, = 
NI, /  N I ,  IC, = N,,/ N, (i, j = A, B; j # i ) .  They relate to the sublattice magnetisations as 
M, = C, - IC, ( i  = A, B). In the uniform crystal limit, i.e. the SQL-AF magnetic Ising 
system, phase transitions occur as the ordered phase to the paraphase. In our aggrega- 
tion cluster system it is also expected that phase transitions would appear in the 
infinite-size limit if they exist at all, and that the transition temperature should become 
considerably lower than those of the uniform crystal. There may exist some new types 
of phase transitions being characteristic for non-linear, non-equilibrium and finite-size 
systems, but we will investigate the phase transition and its behaviour in the infinite-size 
limit as a first step in our study. 

Before we enter the discussion of our computations, we emphasise some important 
points in the process of the derivation of our results. Firstly, our system is strongly 
concerned with a finite-size, non-equilibrium and random process system. This fact 
makes the determination of the transition point and the behaviour of the system difficult. 
The finite size of the system modifies the singular behaviour at the transition point of 
the corresponding infinite system to regular behaviour. In a non-equilibrium system 
there is the possibility of the appearance of different behaviour from the ordinary 
critical behaviour in the equilibrium state. A random process system requires us to 
take the statistical average for each set of physical parameters. Therefore a computing 
error comes from the finite size of the aggregation clusters and the lack of data for 
the random processes, and it makes the. singular (critical) point and its characteristic 
behaviour vague. Our method of attacking these difficulties (though it is not complete) 
is as follows: (i)  we choose a cluster size N as large as possible; (ii) we adopt as many 
good (i.e. the deviation from the average value is small) random process data as 
possible; and (iii) we use an extrapolation procedure similar to the finite-size scaling 
method used in the usual critical phenomena, for data sets for 3-4 different size clusters 
(including the maximum cluster size). Because of various actual limitations we have 
studied a relatively small system with few good data values. 



Phase transition of binary-component DLA-SQL systems 393 1 

Now let us proceed to our computations and results. A list of our computa- 
tional objectives is as follows: (i) differences from the usual DLA, (i i)  differences 
between the binary-component and the single-component systems, (iii) the concentra- 
tion effects, (iv) the a and $Pc effects, (v) the temperature effect, and (vi) the chemical 
potentials and the pressure effects, in the process of evaluation of the possibility of 
phase transitions and the DLA-like properties. These basic issues are argued as 
follows. 

(i)  As the usual DLA ( M  = 1 ,  c = 1) corresponds to the ( A +  B) cluster system with 
a =0, this item can be argued by comparing the behaviour with that of the ( A  or B 
or A +  B) cluster system with a # 0. 

(ii) As the single-component (A4 = 1 )  system coincides with the (A+B)  cluster 
system, we may discuss this item from differences among the {A, B, ( A t  B)} cluster 
systems. 

(iii) Over various concentration values c A ,  we compare physical quantities and the 
cluster patterns. To derive especially interesting properties in our system, we choose 
small values for cA.  

(iv) This item can be argued by comparing the results for various values of CY and 
CPc, but the qualitative features of our system may be derived from the a dependence 
for CPc=0.5. 

(v) The main interest consists of ( 1 )  whether there exists a possibility of phase 
transitions, and (2) the comparison of differences among the ordered state, the parastate 
and the temperature-independent ( a  = 0) case. 

(vi) We can discuss this by computing the changes of physical quantities and cluster 
patterns for various values of chemical potentials and pressure. As this issue belongs 
to the second step of our study, we do not discuss it below. 

The actual computations have been performed for a representative case (JI = -1, 
J2 = 0.5, 9, = 0.5) with cA = 0.1, which matched with our objectives. In this particularly 
interesting case we took N = 10 000 and a = {0,0.3,0.5,0.8,  I } ,  and averaged over 
several values. The numerical results are shown in figure l ( a )  for the sublattice 
magnetisations (MA, - MR) and in figure 1 ( 6 )  for the sublattice commensurability CA 
(incommensurability ICB). Using data both for the maximum-size cluster and for the 
intermediate-size ( N  - 5000, 7000, 9000) clusters, we extrapolated the transition point 
of the infinite-size system in terms of the finite-size scaling approach. Though we could 
neither rigorously prove the existence of the transition point nor show the behaviour 
near the point from our actual limitations, phase transition points in the infinite-system 
point of view were determined and we obtained the qualitative phase diagram illustrated 
in figure 2. In the following we summarise the characteristic features on the phase 
transitions obtained from these figures. 

(i)  The physical quantities {(MA, -MB), CA, IC,} for a = 0 are independent of 
the temperature, the interactions { J ,  , JJ and the chemical potentials ( h A ,  h , ) ,  and they 
give the lower limit. 

(ii) The above quantities for any CY depend on the concentration cA and a at zero 
temperature. This fact requires to redefine the OP as ( M  - Mmi,)/( M,,, - M,,,) + M. 

(iii) It is very interesting that the sublattice magnetisations are negative for small 
concentrations of cA. 

(iv) For the cases ~ ~ 3 0 . 5 ,  the sublattice magnetisations ( M A ,  -MB) are non- 
negative. 

(v) At least there exists a possibility of the phase transitions, from the ordered 
phase { ( M A ,  -ME) for MA # 0) to the paraphase [9]. 
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Figure 1. Phase transition behaviour in the case c,=O.l ( J ,  = -1, J 2  =0.5, B,=O.S) for 
the (I parameters. ( a )  Sublattice com(incom)mensurability CA,  IC, against reduced 
temperature; ( b )  sublattice magnetisation M A ,  - M ,  against reduced temperature T/IJ,I. 

1 

U 

0 0 . 5  1 .o 
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Figure 2. Phase diagram for the same case as figure 1. 

(vi) The qualitative a-dependent phase diagram shows also a simple pha e ransition 
from the ordered phase to the paraphase. However, there should exist a lower critical 
value a, for the existence of this ordered phase, which has not been determined yet. 
The critical temperature T, in our system is considerably lower than that of the 
corresponding uniform crystal system. (S Miyajima (private communication) found 
that there is a critical point in a ferromagnetic Ising system on the DLA cluster and  
that its T, is very small.) The reason is that the aggregation clusters behave as a 
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network having a small effective coordination number, i.e. they are of a low-dimensional 
network which is strongly influenced by finite-size effects. 

Next we consider the DLA-like properties: the aggregation patterns, the correlation 
functions and the fractal dimensions. The patterns of the first two cases supply us 
with physically important information for the system. Especially for researchers in 
this field, they give important detailed data concerning the growth process. The weight 
of one pattern in the random process is not heavy but a selected typical pattern is very 
instructive. With the aid of an electronic computer we drew three types of aggregation 
pattern constructed with (A+B) atoms, with A atoms, and with B atoms. Typical 
examples (cA = 0.3, J ,  = -1, J 2  = 0.5, Pc = 0.5, T = 0.4(J11) of cy = 0.8 for N = 6000 are 
shown in figure 3. TO understand the physical tendencies in the case of cy = 1 (cA = O . l ) ,  
we show a few patterns of (A+ B) atoms for N = 10 000 in figure 4. Information about 
the particle distribution can be obtained from the density-density correlation function. 
We define the i-atom density p , ( r )  as 1 for the sites occupied by the I atom and 
otherwise 0. The correlation functions in a Nu-particle aggregation cluster are defined 
by 

CtsJ ( r )=  N;: c FJ,(r’)p,(r’+ r> ( i , j  = A, B) 
r 

and are an approximation to the ensemble averaged correlation function 

( p , (  r ’ ) p J ( r ’ +  r ) ) ( ( p , (  r’)Xp,( r + rf)))-”2. 

These functions are assumed to depend only on the distance r separating the two sites, 
for r much less than the cluster size. We calculated C,r(r)  for the i-atom clusters 

l a 1  ib l  I C 1  

Figure 3. Aggregation clusters of N = 6000 particles in the case cA = 0.3 iJ, = -1, J2 = 0.5, 
8, = 0.5, T = 0.4(JlI) for a = 0.8. ( a )  ( A +  B)-atom cluster; ( b )  A-atom cluster; ( c )  B-atom 
cluster. 

i a )  i b !  it1 

Figure 4. iA+B)-atom aggregation clusters of N = 10000 particles in the case c,=O.l 
( J , = - i , J Z = 0 . 5 , b , = 0 . 5 ) f o r a = l :  ( a )  T//J , /=O.O05;ib)  T/ lJ , l=O.l : (c)  T/lJ,l=0.4. 
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( i  =A, B) and C (  r)  for (A+ B)-atom clusters, but the results for these three types of 
correlation function were the same within the range of numerical accuracy. These 
supply an answer to objective (i). Figure 5 shows an example of the C ( r )  correlation 
function averaged over directions and over several clusters consisting of N = 10 000 
particles for the case cA = 0.1 (J, = -1, J2 = 0.5, Pc= 0.5) with a = 0.3, T/IJ1l = 0.05. 
The characteristic features of the aggregation properties are summarised as follows. 

- 8  -6 -4 - 2  
log2 R 

Figure S. Density-density correlation function averaged over several aggregation clusters 
in the case cA = 0.1 (Jl = -1, J, = 0.5, 9, = O S )  with a = 0.3, T/(J,I = 0.05. R stands for 
the distance measured in the lattice constant. The line is C ( R )  - R-0.401. 

(i)  Firstly we consider the a, C, dependence of three types of cluster. When 
cA = O( l ) ,  the A( B)-atom cluster does not appear. When cA is a small value ( O S  cA < 
c,,), the A-atom cluster is constructed with fewer number of atoms than the B-atom 
cluster for small values of a (OS a < ab),  and vice versa for a near unity (ab < a s 1). 
Here CAb, ab stand for certain balancing values which depend on the quantities 
[c,, a, T, {J,, J2} ,  { h A ,  hB}, P,]. In contrast, when cA is large ( C A b <  C A S  I ) ,  the 
composite-atom number on the A-atom cluster is larger than that on the B-atom cluster 
for any a. The physical reason is that the symmetry of the binary-component system 
was broken by choosing the background constructed with the B atoms. 

(i i)  Next let us consider the a, T dependence of the (A+B)-atom clusters. The 
a = 0 case depends on cA but not on T. This case belongs to the paraphase. The 
behaviour of the a # 0 case is divided into two types for the ordered phase and for 
the paraphase. Notice that the paraphase behaviour for a # 0 is influenced by the 
physical factors near the crystal surface (e.g. the competition of interactions, the 
chemical potential differences and the temperature) and the a = 0 behaviour depends 
only on the constant sticking probabilities (PcA, PcB), in addition to the common 
factors {c,, cB}. The differences in the behaviour of two types are very difficult to 
distinguish by only looking at figures, since they accompany the statistical randomness. 
We will study them through the fractal dimensions below. Compared with the usual 
DLA, the characteristic properties of our SQ lattice clusters, including up to the next- 
nearest-neighbour interactions, are that the number of closed loops increases and dense 
clusters are formed. 

( i i )  Finally we discuss the characteristic properties of the fractal dimensions. The 
correlation functions C(={CiJ) )  show a power law over the region of a few lattice 
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spacings to the aggregation cluster size. They are expressed as 
C ( r )  - r W A  

where their exponents and the corresponding fractal dimensions are denoted by 
A(s{A,~})  and 2 - A  respectively. When we compute the exponent in a finite-size 
system, diffusion particles stick at a far distance ( r  large) perimeter with high probabil- 
ity, and screen near-distance ( r  small) areas (where they can no longer stick). In other 
words, the behaviour of the correlation function is settling down from near-distance 
regions with increasing cluster size. But such behaviour in certain domains near the 
origin is different from that desired, because the number of lattice sites allowed on a 
circle with radius r is too few and the increment by one atom occupation (which is 
associated with the statistical error) influences a large change. On the other hand, the 
aggregation processes are still going on outside a certain far-distance domain. Therefore 
we note that the power laws in aggregation problems are derived from the rather 
short-distance (not too short and not too long) behaviour, contrary to the long-distance 
behaviour in critical phenomena. Accordingly, in the computation of critical exponents 
we may well aim their values in the infinite correlation length limit. Therefore any 
ambiguity does not enter their evaluations. On the other hand, fractal dimensions 
must be evaluated over some distance interval between the lower and the upper limits. 
These two limits are evaluated with the statistical random average over aggregation 
clusters. Actual individual data give considerably good agreements for the exponents 
if we suppose two arbitrary values for the two limits. Concepts of the renormalisation 
group (RG) theories have been applied, on the one hand, to the critical phenomena 
in condensed matter with infinite particles and, on the other hand, in confinement 
problems of high-energy physics with finite particles. Their essential critical behaviour 
is described by the short- or long-distance behaviour respectively. Our system must 
be evaluated in the same way as the latter application. From such a point of view, 
according to our method described above, we readjusted our data and obtained the 
following result. Contrary to the expectation that our system may belong to a new 
type of phase transition with temperature-dependent exponents A and with different 
exponents A,, ( i ,  j = A, B), their temperature dependencies and their magnitude 
differences seem to be smaller than the range of our numerical accuracies. The exponent 
values are evaluated for the case c A = 0 . 1  ( J ,  = -1, J 2 = 0 . 5 ,  LPP,=O.5) as in table 1. 

From this it follows that the exponent values are almost the same (slightly different) 
in the same (different) phase regions, and increase slightly with increasing a. The 
other parameter dependence of these exponents is currently under study. 

We summarise the characteristic tendencies between the usual DLA and our system 
on the SQ lattice. 

Table 1. 

~ ~~~ 

a 

TIIJI 0 0.3 0.5 0.8 1 

0.05 0.326 0.353 0.357 0.359 0.360 
0.1 0.326 0.355 0.359 0.360 0.361 
0.2 0.326 0.357 0.560 0.361 0.362 
0.4 0.326 0.358 0.361 0.362 0.363 
1 0.326 0.359 0.361 0.363 0.363 
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(i)  The constant sticking probability effects can be understood in the case of a = 0. 
The exponent value and  the number of sticking particles per unit time increase with 
increasing sticking probability. 

(ii) The far-neighbour interaction effects can be drawn in the cy # 0 case. The 
interactions slightly enhance the exponent values. 

Finally we summarise the range of validity of our approximation and  the remarkable 
features for our objectives (i)-(v). With respect to the accuracy of the exponent, we 
suppose the error to be within 0.02. 

(i) In contrast to the usual DLA system having no phase transitions, our system 
features the possibility of phase transitions characterised by the physical variables and  
parameters, in the infinite-size cluster limit, in the parameter regions above a,, cAcr 
and nowhere else. The exponent values in our system are slightly larger than those in 
the DLA system. 

(ii) By taking into account two kinds of atoms we could investigate the interesting 
(ordered, para) phase and their behaviour, while the single-component system (cf 
( A +  B) system) displays rather simple but interesting behaviour, in comparison with 
the usual DLA system. Our  system has almost the same values depending upon the 
physical parameters, within our  numerical accuracy, but the regimes characterised by 
different exponent values may exist in the parameter regions below a,, cAC. 

(iii) By introducing the concentrations for the binary components we investigated 
the regions below and above the critical (percolation) concentration for each com- 
ponent. When cA is small but larger than cAc, negative sublattice magnetisation appears 
over wide ranges of temperature. 

(iv) The irreversibility of the system comes from the constant part (1 -a)Pp, and 
the thermal part apt of 8. The phase transition of the ordered phase to the paraphase 
takes place for a > a,. 

(v) By introducing the concept of temperature we could discuss the phase transitions 
and  their behaviour. A possibility of the existence of phases was suggested in our 
system. The exponent values are independent of temperature within our numerical 
accuracy. 

4. Concluding remarks 

Improving the DLA model, we constructed a new physical multicomponent model, 
reflecting a slightly more complex interaction mechanism near the crystal surface, 
chemical potentials of composite particles and temperature, in addition to the diffusion 
particle concentrations and  the constant sticking probabilities. Further we introduced 
the non-equilibrium-equilibrium parameter a. 

We found that our system has a possibility of a new type of phase transition from 
the ordered state to the parastate, but these states are different from the usual equili- 
brium states. The critical temperature are considerably lower than those of the corre- 
sponding Ising system. The sublattice magnetisations are associted with one of the OP 

of the system, but it is required to redefine them to change in the interval (0, 1).  A 
very interesting feature is that negative sublattice magnetisations appear for 0 < cA < 0.5. 
Within the range of our numerical accuracies, we could not distinguish the differences 
among the density-density correlation functions { C A A ,  C,, , C(A+B),A+Bl}, and the 
temperature dependence of the critical exponent A. But these are still open questions. 
That is, we think that there may be new phase regions in our system, where the OP are 
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different. We need to look for a complete set of OP in our system. In order to get 
accurate results in a simple systematic treatment, we tried to attack in terms of a 
finite-size RG approach, a real-space RG approach and further analytic RG approach, 
but we have not yet arrived at satisfactory results. 

Now let us discuss the relation of our results to experiments. Historicall), in order 
to discuss interfacial stability and pattern formation in many, common, physical 
problems as non-equilibrium dynamics problems, the Saffman-Taylor problem [9] (the 
interfacial motion of two incompressible fluids with different viscosities in a two- 
dimensional channel devised by Hele-Shaw [ lo], models for dendritic growth [ 11 and  
for the DLA [5,6] and so on, have been well investigated. Notably, the Hele-Shaw 
system was translated into a quite effective computing model with the DLA-like random 
walk picture, and provides the foundation for the Monte Carlo study of the hydro- 
dynamic process. It was pointed out by Paterson [ 111 that a similarity exists between 
the interfacial motion of two fluids in porous media and a set of the mean-field DLA 

equations, and by Pietronero and Wiesmann [ 121 that the same analogy exists between 
the dendritic breakdown and  the D L A  system. They compared their DLA simulations 
with the same experiments. Tang [13] showed that the mean-field limit of DLA is 
exactly the Saffman-Taylor problem. Bensimon et a1 [2] found a more general connec- 
tion between the Saffman-Taylor problem and the DLA. Nittmann et a1 [ 7 ]  performed 
the same experiments and  DLA simulations of fluids in a Hele-Shaw cell in the 
zero-surface-tension case. From the theoretical [14-171 and experimental [ 18-20] 
studies the DLA looks like the zero-surface-tension case of the Saffman-Taylor problem, 
i.e. zero surface tension makes an  interface highly unstable and, as a result, the 
aggregation cluster of DLA forms tiny fingers or wisps which have a fractal structure. 
This is different from any structure formed in a real fluid flow with non-zero surface 
tension. In order to improve the usual D L A  model and to derive reasonable fluid 
behaviour, Tang required that no motion occurs until some number M of walkers 
arrived. Comparing his result to the exact steady state solution of Saffman and Taylor 
[9] or to the exact time-dependent solution of Shraiman and Bensimon [14], he found 
an  excellent agreement between them. Another improvement of the DLA model is to 
take into account the surface tension correctly. In  our system we did not take into 
account any kind of averaging M but some kind of temperature-dependent surface 
tension at the perimeter (interface). Later we shall devise both some kind of averaging 
method, like the M averaging, and some sort of growth mechanism, such as the 
snowflake, as we intend to compare our results with experiments. 
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